
EasyFlash Programmer’s Guide

Thomas ’skoe’ Giesel (skoe@directbox.com)

May 22, 2012

Contents

Contents 1

1 Introduction 2
1.1 Additional Reading . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Hardware Description 3
2.1 Flash Memory Configuration . . . . . . . . . . . . . . . . . . . 3
2.2 Boot Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Cartridge RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Register $DE00 – EasyFlash Bank . . . . . . . . . . . . . . . . 4
2.5 Register $DE02 – EasyFlash Control . . . . . . . . . . . . . . . 4
2.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Conventions 6
3.1 Address Format Convention . . . . . . . . . . . . . . . . . . . . 6
3.2 Scan the Keyboard . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 LED Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Game States and High Scores . . . . . . . . . . . . . . . . . . . 7
3.5 Unused Data Areas . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 The EasyFlash Cartridge Format 8
4.1 Cartridge Boot Process . . . . . . . . . . . . . . . . . . . . . . 8

5 EasyAPI 9
5.1 Using EasyAPI in Cartridges . . . . . . . . . . . . . . . . . . . 9
5.2 Using EasyAPI in Ordinary Programs . . . . . . . . . . . . . . 9
5.3 EasyAPI Memory Usage . . . . . . . . . . . . . . . . . . . . . . 10
5.4 EasyAPI Code Position . . . . . . . . . . . . . . . . . . . . . . 10

1



CONTENTS 2

5.5 EasyAPI Signature . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.6 EasyAPI Version String . . . . . . . . . . . . . . . . . . . . . . 10
5.7 EAPIInit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.8 EAPIWriteFlash - $df80 . . . . . . . . . . . . . . . . . . . . . . 11
5.9 EAPIEraseSector - $df83 . . . . . . . . . . . . . . . . . . . . . . 11
5.10 EAPISetBank - $df86 . . . . . . . . . . . . . . . . . . . . . . . 12
5.11 EAPIGetBank - $df89 . . . . . . . . . . . . . . . . . . . . . . . 12
5.12 EAPISetPtr - $df8c . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.13 EAPISetLen - $df8f . . . . . . . . . . . . . . . . . . . . . . . . 12
5.14 EAPIReadFlashInc - $df92 . . . . . . . . . . . . . . . . . . . . 13
5.15 EAPIWriteFlashInc - $df95 . . . . . . . . . . . . . . . . . . . . 13
5.16 EAPISetSlot - $df98 . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Cartridge Name 15



Chapter 1

Introduction

This manual gives you all information to start to develop software for the
EasyFlash cartridge in a low-level way.

1.1 Additional Reading

When you finished this Programmer’s Guide, you may want to find out more
about high level mechanisms like the EasyFlash File System and related formats
and tools. You can find information about these in EasyFlash-EasyFS.pdf.

3



Chapter 2

Hardware Description

2.1 Flash Memory Configuration

An EasyFlash cartridge consists of two flash memory chips, called ROML chip
and ROMH chip. Each of them has a size of 512 KiB. Even though newer
EasyFlash versions have only one physical chip, they can still be seen as these
two logical chips.

As only 8 KiB of memory per chip can be mapped into the address space of
the C64 at once, EasyFlash supports banking. Each chip has a size of 512 KiB,
so there are 512 / 8 = 64 banks.

The mapping of the chips into the C64 memory is controlled by two lines
of the Expansion Port: /GAME and /EXROM. Table 2.1 shows the possible
memory configurations. Keep in mind that also the CPU register $01 influences
the memory configuration.

/GAME /EXROM ROML ROMH Mode

1 1 - - Invisible Mode

1 0 8 KiB at $8000 - 8K Mode

0 0 8 KiB at $8000 8 KiB at $A000 16K Mode

0 1 8 KiB at $8000 8 KiB at $E000 Ultimax Mode

Table 2.1: States of /GAME and /EXROM lines

Software can chose the active bank and set the memory configuration
(/GAME and /EXROM) by using two I/O registers. They are described in the
following chapters.

2.2 Boot Modes

The EasyFlash cartridge has a boot jumper or switch. If the boot switch is in
position “Boot” and the computer is reset, EasyFlash is started normally: The
Ultimax memory configuration is set, bank 0 selected. The CPU starts at the
reset vector at $FFFC.

4



CHAPTER 2. HARDWARE DESCRIPTION 5

In Ultimax mode the ROMH chip is banked in at $E000, the flash must
contain a valid reset vector and some start-up code there. This is described in
chapter 4.

If the Boot jumper is in position “Disable”, EasyFlash starts with cartridge
memory hidden. However, software like EasyProg can write to the flash memory
because it can override the jumper setting.

2.3 Cartridge RAM

An EasyFlash cartridge has 256 Bytes of RAM. This memory is always visible.
It can be used to save small portions of code or data in a way which is unlikely
to interfere with other software. The RAM is located at $DF00. This memory
is not part of the normal 64 KiB of internal C64 RAM but part of the I/O
memory space.

2.4 Register $DE00 – EasyFlash Bank

$DE00 is a write-only register to select the active flash memory bank. The
bank can be changed no matter which memory configuration is set in $DE01.
The bank is valid for both chips, ROML and ROMH. The value after reset is
$00. Bits 6 and 7 should always remain 0. Physically this register sets the state
of the upper address lines. Table 2.2 shows the meaning of the bits.

Bit 7 6 5 4 3 2 1 0

Meaning 0 0 Bank

Table 2.2: Register $DE00

2.5 Register $DE02 – EasyFlash Control

This is a write-only register located at $DE02. The software can control the
memory configuration of the cartridge and the LED using this register. The
value after reset is $00. Tables 2.3 and 2.4 show details about this register. For
the memory configurations possible refer to table 2.5. Software will usually use
bit combinations with M = 1.

2.6 Limitations

Note that an EasyFlash cartridge is not designed to be read from or written to
at 2 MHz mode on a C128. It is not recommended to use EasyFlash cartridges
on cartridge port expanders.

Bit 7 6 5 4 3 2 1 0

Meaning L 0 0 0 0 M X G

Table 2.3: Register $DE02



CHAPTER 2. HARDWARE DESCRIPTION 6

Position Name Comment

7 L Status LED, 1 = on

6..3 0 Reserved, must be 0

2 M GAME mode, 1 = controlled by bit G, 0 = from jumper
”boot”

1 X EXROM state, 0 = /EXROM high

0 G GAME state if M = 1, 0 = /GAME high

Table 2.4: Bits of $DE02

MXG Configuration

000 GAME from jumper, EXROM high (i.e. Ultimax or Off)

001 Reserved, don’t use this

010 GAME from jumper, EXROM low (i.e. 16K or 8K)

011 Reserved, don’t use this

100 Cartridge ROM off (RAM at $DF00 still available)

101 Ultimax (Low bank at $8000, high bank at $e000)

110 8k Cartridge (Low bank at $8000)

111 16k cartridge (Low bank at $8000, high bank at $a000)

Table 2.5: Configuration of cartridge memory maps



Chapter 3

Conventions

Conventions can make the life easier and look professional. So let’s invent some.

3.1 Address Format Convention

Addresses of EasyFlash have a special format in this document and related
tools. Its format is shown in figure 3.1. For example, the address 00:1:1FFC
means bank 0, ROMH chip, offset $1FFC. This is the address which has to
contain a reset vector to make the cartridge work.

BB:C:FFFF

Bank ($00..$3F)
Chip (0 = ROML, 1 = ROMH)
Offset in bank ($0000..$1FFF)

Figure 3.1: Address scheme

3.2 Scan the Keyboard

When a cartridge is plugged into the C64, often the user has no other way
to get to the BASIC prompt than unplugging the cartridge. EasyFlash has a
switch or a jumper to avoid booting.

To make it easier for the user, scan the keyboard as early as possible in your
start-up code. If one of the keys , or is being held down, make
the cartridge invisible and call the Kernal’s reset vector. Remember that you
can hide (“kill”) the cartridge by writing $04 to $DE02.

3.3 LED Usage

If there are no reasons to do it in a different way, you should use the LED like
follows:

• When the EasyFlash is active, the LED should be on

• When it is inactive (invisible mode), the LED should be off

7



CHAPTER 3. CONVENTIONS 8

• While the flash is being written, the LED should blink, e.g. toggle once
per 256 bytes.

EAPI will take care for the last point. But you need to switch the LED on
again after you finished the programming.

3.4 Game States and High Scores

Cartridges may save application specific data like game states and high scores to
flash memory using EasyAPI. This is described in chapter 5. Cartridge images
(CRT files) should contain empty initialized data in this memory area. Do not
rely on the assumption that EasyProg will erase the whole cartridge when a
CRT file is flashed. Actually it will only erase sectors which are contained in
the CRT file.

3.5 Unused Data Areas

Data areas which are contained in a cartridge image (CRT file) but not actually
in use (i.e. padding areas and gaps) should be filled with $ff. This may reduce
the programming time.



Chapter 4

The EasyFlash Cartridge Format

Native EasyFlash Cartridges can use the full flash memory of 1 MiB. They can
use any kind of banking which is supported by the EasyFlash hardware in any
way they want. This is most probably the cartridge format you want to develop
for.

EasySDK comes with some tools and code snippets to create, write and
read EasyFlash cartridges.

There are also other cartridge formats supported by the EasyFlash cartridge.
A short overview about these formats can be found in EasyFlash-EasyFS.pdf.

4.1 Cartridge Boot Process

As already mentioned, EasyFlash cartridges always start in Ultimax mode.
Therefore there is a small boot code required at the end of the ROMH flash
chip on bank 0 (00:1:1xxx). This start-up code is executed directly after a CPU
reset. The start-up code has to:

• Provide the reset vector

• Initialize the CPU registers $01 and $00 (in this order)

• Initialize all I/O you need (SID, VIC-II etc.)

• Scan the keyboard

• Set up $DE02 and start the stuff

A reference implementation for the start-up code can be found in
examples/banking-test.

If a native EasyFlash CRT wants to write to the flash memory, it may
contain a piece of code called EasyAPI. This is described in chapter 5.

The memory area from 00:01:1800 to 00:01:1BFF is reserved for EasyAPI. So
the startup code and data can occupy e.g. the area 00:01:1C00 to 00:01:1FFF.
A part of this area may be used to embed a cartridge name, refer to chapter 6
for more information.

9



Chapter 5

EasyAPI

Applications can write to EasyFlash cartridges using a small library which is
called EasyAPI (EAPI). This application programming interface supports to
erase blocks of flash memory and write data to flash. Additionally it can be
used to read from flash memory. EasyAPI can be seen as a flash chip driver,
similar to drivers for your sound card or video card.

EAPI can be part of your cartridge software. If you put it at a special position,
EasyProg (the tool to write CRT images to cartridges) will automatically update
the EAPI code to the latest version when your cartridge is written to flash
memory. This is strongly recommended, because there are different EasyFlash
hardware versions which need an updated EAPI.

EasyAPI can also be used in programs running from disk. It can be loaded
from a file and used to write data to flash memory. Writing is done on a lower
logical level only, by directly addressing flash memory. There is no kind of flash
file system directly supported by EAPI.

5.1 Using EasyAPI in Cartridges

There is one very important feature of EAPI: When a CRT image which contains
the “EAPI” signature at the right place is written to a cartridge by EasyProg,
the EasyAPI memory area is replaced with the latest version of the EAPI code
for the actual flash chip type. The API of this code will remain compatible. To
add the EasyAPI code to your self-implemented CRT images, include the binary
(e.g. “eapi-am29f040-10”) at 00:01:1800 into your CRT image. Remember to
reserve 768 ($0300) bytes of memory for future versions of EAPI.

Always embed the current version of EAPI for Am29F040 into your CRT,
otherwise it may not run on emulators because they usually emulate this chip.

5.2 Using EasyAPI in Ordinary Programs

EasyAPI can also be used in ordinary programs which are started e.g. from a
disk. They must search for a file called “eapi-????????-??” (note the number of
wildcards ’?’) on the current drive and load it to RAM. Programmers should
not link EasyAPI directly into their programs, otherwise it cannot be replaced
by newer versions of the file later.

10



CHAPTER 5. EASYAPI 11

5.3 EasyAPI Memory Usage

The functions of EasyAPI do not pollute the C64 RAM. All data they need
is stored in the a part of the EasyFlash RAM from $DF80 to $DFFF. One
special function named EAPIInit must be called first to initialize the jump
table. EAPIInit temporarily uses the zeropage locations $4b and $4c, but it
backs them up and restores them before the function returns. When you use
the RAM at $df80 to $dfff for something else, remember to call EAPIInit again
before using other EasyAPI functions.

5.4 EasyAPI Code Position

Before you call EAPIInit, you must load EAPI to any RAM area in the range
$0200..$7FFF or $C000..$CFFF. The first byte must be page aligned, EasyAPI
may be up to 768 ($0300) bytes of size.

If you use EasyAPI from a cartridge, you must copy it from ROM to any
RAM area as described above. The reason is that the code uses bank switching
and would bank itself out otherwise.

5.5 EasyAPI Signature

Offset Length Comment

0 4 EasyAPI signature, always $65 $61 $70 $69 (”EAPI”)

This signature is only used to show the existence of EasyAPI. If the tool
EasyProg finds this signature, it can replace this memory area 00:1:1800 to
00:1:1BFF with a newer version of EasyAPI.

5.6 EasyAPI Version String

Offset Length Comment

4 16 EasyAPI version string, 0-terminated PETSCII

This string contains the version of EasyAPI. It is for informational purpose
only.

5.7 EAPIInit

Read Manufacturer ID and Device ID from the flash chip(s) and check if this chip
is supported by this driver. Prepare our private RAM for the other functions of
the driver. When this function returns, EasyFlash will be configured to bank
in the ROM area at $8000..$bfff.

Remember that this function must be called before any other EAPI function.
This function must be called with JSR loadAddress + 20 where loadAddress

is the address in RAM where you copied EasyAPI to. It uses SEI, it restores



CHAPTER 5. EASYAPI 12

all Flags except C before it returns. Do not call it with D-flag set. $01 must
enable ROM at $8000..$bfff.

parameters:

-

return:

C set: Flash chip not supported by this driver

clear: Flash chip supported by this driver

If C is clear:

A Device ID

X Manufacturer ID

Y Number of physical banks (>= 64) or

number of slots (< 64) with 64 banks each

If C is set:

A Error reason

changes:

all registers are changed

5.8 EAPIWriteFlash - $df80

Write a byte to the given address. The address must be as seen in Ultimax
mode, i.e. do not use the base addresses $8000 or $a000 but $8000 or $e000.

When writing to flash memory only bits containing a ’1’ can be changed
to contain a ’0’. Trying to change memory bits from ’0’ to ’1’ will result in an
error. You must erase a memory block to get ’1’ bits.

This function uses SEI, it restores all flags except C before it returns. Do
not call it with D-flag set. $01 must enable the affected ROM area.

parameters:

A value

XY address (X = low), $8xxx/$9xxx or $Exxx/$Fxxx

return:

C set: Error

clear: Okay

changes:

Z,N <- value

5.9 EAPIEraseSector - $df83

Erase the sector at the given address. The bank number currently set and the
address together must point to the first byte of a 64 KiByte sector.

When erasing a sector, all bits of the 64 KiB area will be set to ’1’. This
means that 8 banks with 8 KiB each will be erased, all of them either in the
ROML chip when $8000 is used or in the ROMH chip when $e000 is used.

This function uses SEI, it restores all flags except C before it returns. Do
not call it with D-flag set. $01 must enable the affected ROM area.

parameters:

A bank

Y base address (high byte), $80 for ROML, $a0 or $e0 for ROMH



CHAPTER 5. EASYAPI 13

return:

C set: Error

clear: Okay

change:

Z,N <- bank

5.10 EAPISetBank - $df86

Set the bank. This will take effect immediately for cartridge read access and
will be used for the next flash write or read command.

parameters:

A bank

return:

-

changes:

-

5.11 EAPIGetBank - $df89

Get the selected bank which has been set with EAPISetBank. Note that the
current bank number can not be read back using the hardware register $de00
directly, this function uses a mirror of that register in RAM.

parameters:

-

return:

A bank

changes:

Z,N <- bank

5.12 EAPISetPtr - $df8c

Set the pointer for EAPIReadFlashInc/EAPIWriteFlashInc.

parameters:

A bank mode, where to continue at the end of a bank

$D0: 00:0:1FFF=>00:1:0000, 00:1:1FFF=>01:0:1FFF (lhlh...)

$B0: 00:0:1FFF=>01:0:0000 (llll...)

$D4: 00:1:1FFF=>01:1:0000 (hhhh...)

XY address (X = low) address must be in range $8000-$bfff

return:

-

changes:

-

5.13 EAPISetLen - $df8f

Set the number of bytes to be read with EAPIReadFlashInc.



CHAPTER 5. EASYAPI 14

parameters:

XYA length, 24 bits (X = low, Y = med, A = high)

return:

-

changes:

-

5.14 EAPIReadFlashInc - $df92

Read a byte from the current pointer from EasyFlash flash memory. Increment
the pointer according to the current bank wrap strategy. Pointer and wrap
strategy have been set by a call to EAPISetPtr.

The number of bytes to be read may be set by calling EAPISetLen. EOF
will be set if the length is zero, otherwise it will be decremented. Even when
EOF is delivered a new byte has been read and the pointer incremented. This
means the use of EAPISetLen is optional.

parameters:

-

return:

A value

C set if EOF

changes:

Z,N <- value

5.15 EAPIWriteFlashInc - $df95

Write a byte to the current pointer to EasyFlash flash memory. Increment the
pointer according to the current bank wrap strategy. Pointer and wrap strategy
have been set by a call to EAPISetPtr. In case of an error the position is not
inc’ed.

parameters:

A value

return:

C set: Error

clear: Okay

changes:

Z,N <- value

5.16 EAPISetSlot - $df98

Set the slot. This function is only available if EAPIInit reported multiple slots.
Software which does not need to change the slot number should not need to

use this function. So usually only EasyProg or similar programs need to call
this.

This will take effect immediately for cartridge read access and will be used
for the next flash write or read command.



CHAPTER 5. EASYAPI 15

parameters:

A slot

return:

-

changes:

-



Chapter 6

Cartridge Name

New EasyFlash implementations show EasyFlash CRTs in a menu. CRT files
may contain a default name for a menu entry at a special place directly behind
the memory area which is reserved for EAPI, as shown in table 6.1.

Position Content

00:1:1800 EAPI

00:1:1b00 Magic ”EF-Name:”, PETSCII (65 66 2d 6e 41 4d 45 3a)

00:1:1b08 Name in upper/lower case PETSCII, up to 16 characters, no gfx
symbols, padded to 16 bytes with binary 0.

00:1:1b18 Start-up code or other data

Table 6.1: EasyFlash Cartidge Name

Example:

i fb00

>C:fb00 EF-Name:Myth@@@@@@@@@@@@................

m fb00

>C:fb00 65 66 2d 6e 41 4d 45 3a 6d 59 54 48 00 00 00 00 ef-nAME:mYTH....

>C:fb10 00 00 00 00 00 00 00 00 ff ff ff ff ff ff ff ff ................

16


	Contents
	Introduction
	Additional Reading

	Hardware Description
	Flash Memory Configuration
	Boot Modes
	Cartridge RAM
	Register $DE00 – EasyFlash Bank
	Register $DE02 – EasyFlash Control
	Limitations

	Conventions
	Address Format Convention
	Scan the Keyboard
	LED Usage
	Game States and High Scores
	Unused Data Areas

	The EasyFlash Cartridge Format
	Cartridge Boot Process

	EasyAPI
	Using EasyAPI in Cartridges
	Using EasyAPI in Ordinary Programs
	EasyAPI Memory Usage
	EasyAPI Code Position
	EasyAPI Signature
	EasyAPI Version String
	EAPIInit
	EAPIWriteFlash - $df80
	EAPIEraseSector - $df83
	EAPISetBank - $df86
	EAPIGetBank - $df89
	EAPISetPtr - $df8c
	EAPISetLen - $df8f
	EAPIReadFlashInc - $df92
	EAPIWriteFlashInc - $df95
	EAPISetSlot - $df98

	Cartridge Name

