
Designing a Real KERNAL Cartridge

Thomas ’skoe’ Giesel

Version 1.1

Nov 4, 2015

Contents

Contents 2

1 Introduction 3
1.1 The Need for a KERNAL Cartridge . 3
1.2 KERNAL Cartridge Design Challenges . 3

2 KERNAL Cartridge Design 5
2.1 Working principle . 5
2.2 Optimization . 7
2.3 Timing Considerations . 8

3 Actual Implementation 9
3.1 EasyFlash 3 . 9
3.2 Implemented Timing . 9
3.3 Compatibility . 10

Bibliography 12

2

Chapter 1

Introduction

1.1 The Need for a KERNAL Cartridge

Nearly all Commodore computers contain a KERNAL ROM. The KERNAL ROM contains
the operating system of the machine, providing the drivers necessary for low level input/output
access, among other functions. However, since the KERNAL is a ROM and cannot be easily
modified, it can be hard to upgrade the functionality in the KERNAL.

On the Commodore 64, the KERNAL is used to access the serial bus and therefore the
disk drives. Most often, people look to KERNAL upgrades to address slow disk access issues.
The standard KERNAL drivers in the C64 offer only slow transfer functionality, while there
are many replacement KERNAL offerings that allow greatly enhanced transfer functionality.
However, this is not the only reason a KERNAL replacement might be desired. Auto-
boot functionality, customized screen layout, or other reasons might demand a KERNAL
replacement.

While there are alternative ways to replace some KERNAL functionality, those mechanisms
limit usefulness. Changing KERNAL vectors that are located in RAM only applies to callers
that utilize those vectors, and only vectorized functionality can be enhanced. As well, new
functionality must exist in the address space, which might conflict with application code.
Thus, cartridges like Action Replay, Fastload, or The Final Cartridge III cannot always offer
the level of compatibility desired.

One well-known replacement KERNAL is JiffyDOS. To use JiffyDOS, one must replace
the KERNAL ROM in the host machine with a new ROM, while the operating system of each
drive must be upgraded as well. Though, some drives, like CMD devices and sd2iec-based
devices, support JiffyDOS standard.

Disk drives typically socket their DOS ROM, for easy replacements. However, many
computer systems do not socket the KERNAL ROM, making replacement much harder.

A KERNAL cartridge can address these issues. The cartridge would allow the same
functionality as a KERNAL replacement, but would not require disassembly of the computer
system or soldering of a socket to the circuit board to allow replacement.

1.2 KERNAL Cartridge Design Challenges

When not in ”Ultimax” mode, which radically changes the memory map to mimic the layout
in the Commodore Ultimax system, the KERNAL can be found in the C64 address space at
$E000 to $FFFF, an 8KiB section of memory. But the KERNAL is not the only memory in
this address space. There is also RAM below the KERNAL. Programs can decide if they
want to read the KERNAL ROM or the RAM there by setting the HIRAM bit in the I/O
register $01 of the 6510 CPU. Figure 1.1 shows the memory map of the C64 with no cartridge
attached.

Write accesses from the CPU are always done to the RAM below the KERNAL. The
VIC-II always reads from that RAM but not from the KERNAL ROM. But CPU read
accesses depend from the signal #HIRAM, which is set in bit 1 of the I/O register $01. If

3

00
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

10
00

90
00

B0
00

C0
00

D0
00

E0
00

F0
00

A0
00

64k RAM

I/O 8k KERNAL8k BASIC

Figure 1.1: Memory map of the C64 with no cartridge attached
E0
00

F0
00

KERNAL

CPU

/HIRAM = 0

ReadRead Write

E0
00

F0
00

RAM

KERNAL

VIC-II CPU

/HIRAM = 1

ReadRead Write

!
!

RAM

Figure 1.2: #HIRAM controls access to KERNAL memory space

#HIRAM is low (0), RAM is read. If it is high (1), KERNAL ROM is read. Figure 1.2
shows this mechanism.

A compatible KERNAL cartridge must implement this behavior. Otherwise, programs
which use $01 to hide the KERNAL ROM will fail, because they cannot use the RAM
between $E000 and $FFFF. However, the #HIRAM signal is not available on the Expansion
Port. That is why many KERNAL cartridges either do not provide access to this RAM area
or have to use a wire which must be connected to the #HIRAM signal inside the C64.

For a compatible KERNAL cartridge with no additional wire, the cartridge must use
another method to determine the state of #HIRAM. Since a write to address $01 sets the
state of #HIRAM, one obvious idea involves tracking any writes to $01. However, writes to
$00 and $01 do not present data on the C64 data bus, rendering such a solution ineffective.

Chapter 2

KERNAL Cartridge Design

2.1 Working principle

#HIRAM does not act alone in re-arranging the memory map. Two lines on the expansion
port, #GAME and #EXROM, also play a part in configuring it.

Pulled up via resistors inside the C64, these two lines can be configured via an external
cartridge. When there is no cartridge attached, both of them are high (1). When a cartridge
is attached, it can pull one or both of these lines low (0) to change the memory configuration.
In this case, the memory configuration can still be changed with the 6510 I/O port, e.g., to
hide the cartridge ROM.

There are two more control lines on the Expansion Port1: #ROML and #ROMH.
Excepting Ultimax mode, #ROML selects an external cartridge ROM into $8000-$9FFF,
while #ROMH selects a ROM into $A000-$BFFF. Whenever the C64, via the address
mapping logic in the Programmable Logic Array (PLA), decides that data from a cartridge
must be read, it pulls down one of these lines. Traditionally they are connected directly to
two 8 KiB ROM ICs in the cartridge.

An example: A cartridge pulls down #GAME and #EXROM to tell the C64 that there
is a 16 KiB cartridge attached. The currently running program has not disabled ROM by
leaving #HIRAM and #LORAM as 1. When the program wants to read a byte at $A123,
which is in the upper cartridge ROM, the PLA determines that this byte must be read from
the external cartridge and brings #ROMH active (0).

Table 2.1 shows the configurations which can be set by a cartridge using #GAME and
#EXROM.

In [PLA12, Appendix A] several different memory configurations are described. Some
interesting cases are shown in table 2.2. In configurations (1), (2) and (3) no cartridge is
attached, i.e., #GAME and #EXROM are 1. Only #HIRAM controls whether there is
RAM or KERNAL ROM visible to the CPU at $E000 in these cases.

There is also a memory area controlled by #HIRAM, which results in a control signal
visible at the Expansion Port: When a 16 KiB cartridge is attached to the Expansion Port,

1In fact there are even more, but these two are interesting now.

GAME EXROM Memory Map

1 1 No cartridge attached, memory map unchanged

1 0 8 KiB cartridge, #ROML mapped to $8000..$9FFF

0 0 16 KiB cartridge, #ROML mapped to $8000..$9FFF, #ROMH
mapped to $A000..$BFFF

0 1 Compatibility mode to Commodore MAX, Ultimax mode, #ROML
mapped to $8000..$9FFF, #ROMH mapped to $E000..$FFFF

Table 2.1: Configurations of #GAME and #EXROM

5

Config #LORAM #HIRAM #GAME #EXROM $A000..$BFFF $E000..$FFFF

(1) 1 1 1 1 BASIC KERNAL

(2) x 0 1 1 RAM RAM

(3) 0 1 1 1 RAM KERNAL

(4) x 1 0 0 ROMH KERNAL

(5) 0 0 0 0 RAM KERNAL

(6) 1 0 0 0 RAM RAM

(7) x x 0 1 — ROMH

Table 2.2: Memory configurations

#HIRAM is used to select whether the #ROMH part of the cartridge or the internal RAM
is mapped to $A000. This is shown in configurations (4), (5) and (6).

This proves invaluable for external KERNAL cartridge design. If the cartridge sets the
#GAME and #EXROM lines low, and a read access of $A000-$BFFF occurs, #ROMH
provides the state of #HIRAM. As #ROMH is connected to the Expansion Port, it can be
captured by the cartridge.

However, the cartridge needs to know the state of #HIRAM during accesses to $E000-
$FFFF, not $A000-$BFFF. The KERNAL cartridge must force an access to $A000-$BFFF,
but it cannot change any running application code. Given those requirements, the cartridge
must find a way to drive the address bus itself in a way that does not affect the running
application.

When the CPU wants to read something, it sets its address outputs to the address to
be read. This address must be altered by the KERNAL cartridge to detect the state of
#HIRAM. But this must be done carefully, because it fights against the CPU address line
drivers and could overheat them when being used excessively.

The 6510 CPU has the ability to turn off its address line drivers, via a control input called
Address Enable Control (AEC). If this input is low, the CPU effectively deactivates the
address line drivers. AEC is not connected to the Expansion Port directly. But it is driven
by the #DMA signal, which is available on the Expansion Port. Unfortunately, #DMA also
changes the state of another CPU control line, Ready (RDY), which will stop the CPU.

The 6500 CPU family datasheet shows that when RDY is asserted during a Phi2 cycle
and released before the cycle ends, it should be ignored and should not stop the CPU. Thus,
it seems like if the cartridge asserts #DMA during a Phi2 cycle but releases it before the
cycle ends, it could drive the address bus during that cycle. This mechanism was tested on
different C64 models. It turned out that some machines got unstable and crashed occasionally.
Obviously, the use of the RDY line as described above renders the CPU unstable.

Fortunately, a method was found which does not involve #DMA. Whenever a CPU read
access to the address range $F000-$FFFF is detected, the cartridge pulls down the address
line A14 for a fraction of the clock cycle. This changes any address between $F000-$FFFF
to an address between $A000-$BFFF. After this is done, the state of #HIRAM can be read
from #ROMH.

If the CPU accesses the KERNAL ROM, the cartridge must place the external KERNAL
ROM into the address space at $E000-$FFFF. The memory map shows a way to accomplish
that. Configuration (7) in table 2.2 illustrates ”Ultimax” mode. In this mode, any read access
in the range $E000-$FFFF will activate the #ROMH signal and will read from external
memory. Therefore, if a valid KERNAL read access is requested, the cartridge must set
#GAME to active (0) and release #EXROM. If RAM is to be read instead, the cartridge
releases all lines to allow an ordinary RAM access. When the Phi2 cycle ends, the cartridge
releases all lines in any case to return to idle state.

The whole procedure is shown in figure 2.1. Note that also the signal BA must be
evaluated, to distinguish a CPU read access from a VIC-II read access. As the VIC-II always

Release #GAME and

#EXROM

Wait for Phi2 high and

address stable

Check R#W, BA and

address

Pull down A14, #GAME

and #EXROM

Release A14, check

#ROMH

Wait for Phi2 low

Release #GAME and

#EXROM

Release #EXROM, put

KERNAL byte on data

bus

[#ROMH high]

[else]
[CPU read access from address $E000..$FFFF]

[else]

Figure 2.1: Working principle (simplified)

reads from RAM but never from KERNAL, the mechanism must ignore read accesses by the
VIC-II.

2.2 Optimization

As mentioned already, write accesses to the CPU I/O register $01 and the data direction
register $00 can be detected on the address bus and the R#W line. The only thing missing
is the actual data byte written there. The cartridge utilizes this fact for an optimization.
The #HIRAM detection is not done for every cycle when the CPU reads KERNAL space.
Instead, it only needs to be detected once, when the KERNAL address space is read the
first time after $00 or $01 have been written. For all additional CPU read accesses at this

address range, the previously detected state of #HIRAM is used, which significantly reduces
the bus traffic, especially on the address line A14.

2.3 Timing Considerations

Some of the steps needed for the external KERNAL implementation have to consider timing
requirements of the components of the C64. Most of them can be found in datasheets.

When Phi2 goes high, the VIC-II sets AEC high when it wants to allow a CPU cycle.
After this signal reached the CPU, it brings the address bus to the final value. The signals
RAS and CAS by the VIC-II are used to set up the address into the DRAM chips. CAS ends
TCHL ≤ 220ns after Phi2, according to [VICII]. CAS is further delayed by approximately 35
ns by the PLA, resulting in the signal CASRAM2. This means that the addresses need to
remain stable for this time plus the address hold time of the DRAMs, which is typically 10
ns to 20 ns.

This means that the external KERNAL cartridge must not modify the address bus less
than 280 ns after the rising edge of Phi2. At this time it sets #GAME, #EXROM and A14.
To hide the latency of the flash memory used on the cartridge, it starts a speculative read of
the KERNAL memory content at this address. The resulting data byte is prepared in the
external KERNAL cartridge, but only put onto the C64’s data bus when #ROMH gets low,
which happens asynchronously about 35 ns after A14 has been modified, which is about 315
ns after the rising edge of Phi2. The results in enough time for the the Data Stability Time
Period (TDSU ≥ 100ns) for the 6510 data lines.

The PLA output is evaluated by the cartridge 80 ns after having set all input conditions.
This is also the time when the cartridge releases A14 and #EXROM if it is a KERNAL
access, and all lines if it is a RAM access. This happens about 360 ns after Phi2.

Even though the timing is very tight, it conforms to the values listed in the datasheets.
Also in real world it proofed to work reliable, as shown in section 3.1.

All times measured by the cartridge are implemented as multiples of 40 ns. A CPLD
with a 25 MHz clock is used for that. As the C64 signals come from another clock domain,
up to 40 ns may be added to the times relative to Phi2 described above. Figure 2.2 shows
the expected timing including the worst case addition of 40 ns.

0 100 200 300 400 500

0 1 2 3 4 5 6 7 8 10

Alter address bus

$Exxx $Axxx $Exxx

CLK

Phi2

Addr

#GAME

#EXROM

#HIROM

Go to Ultimax

Figure 2.2: Timing of the External KERNAL Cartridge (worst case)

2The datasheet of the Signetics 82S100 PLA [Si75] specifies a typical propagation delay TPD of 35 ns
and a maximum delay of 80 ns. The Sharp custom IC used in newer C64s has different timings for different
output lines, but in the same ballpark. None of them actually needs 80 ns under normal conditions, as shown
in [PLA12]

Chapter 3

Actual Implementation

3.1 EasyFlash 3

The multi-function cartridge EasyFlash 3 contains a KERNAL implementation based on this
document, among other cartridge modes. The cartridge contains flash memory, SRAM, a
25 MHz clock source, a 144 macrocell CPLD and a USB device interface for data connections
to PCs.

The hardware design files are released under the Creative Commons license CC BY-SA 3.0.
They are available at the public repository https://bitbucket.org/skoe/easyflash/src/

tip/Hardware/ef3-kicad/.
The CPLD core implemented in VHDL is licensed under the zlib license. It is also avail-

able in that repository: https://bitbucket.org/skoe/easyflash/src/tip/Hardware/

ef3-vhdl. The file Hardware/ef3-vhdl/architecture.txt in the repository contains a
detailed description of the implementation.

Figures 3.1 and 3.4 show two versions of the EasyFlash 3.

Figure 3.1: EasyFlash 3, short version

3.2 Implemented Timing

A logic analyzer was used to capture the signals from an EasyFlash 3 to verify the correct
implementation and to compare it to the theory. The implementation corresponds to the
description given in section 2.3. Figure 3.2 shows a cycle with a #HIRAM detection, followed

9

https://bitbucket.org/skoe/easyflash/src/tip/Hardware/ef3-kicad/
https://bitbucket.org/skoe/easyflash/src/tip/Hardware/ef3-kicad/
https://bitbucket.org/skoe/easyflash/src/tip/Hardware/ef3-vhdl
https://bitbucket.org/skoe/easyflash/src/tip/Hardware/ef3-vhdl

by a read access to the external KERNAL. Figure 3.3 shows a read access from the external
KERNAL without a #HIRAM detection. In this case a previously detected #HIRAM state
was used, as described in section 2.2.

Figure 3.2: HIRAM Detection Captured with a Logic Analyzer

Figure 3.3: Read Access Captured with a Logic Analyzer

3.3 Compatibility

As the time of writing, there are at least 500 EasyFlash 3 cartridges out there, sold by
different vendors and built by several hobbyists. There were many confirmations that the
feature works reliable but no negative feedback. It does not work on the Commodore 128
because it uses a completely different circuitry. A few very early C64s have issues, because
their reset line is driven with a push-pull output, which interferes with the external reset.

Figure 3.4: EasyFlash 3, long version

Bibliography

[Si75] Signetics, 1975, part of Mos and Bipolar ROM / PROM 1975 http://www.

datasheetarchive.com/82S100-datasheet.html.

[PLA12] Thomas ’skoe’ Giesel, 2012, The C64 PLA Dissected, http://skoe.de/docs/

c64-dissected/pla/.

[VICII] Commodore Semiconductor Group, 6567 Video Interface Chip Specification Sheet.

12

http://www.datasheetarchive.com/82S100-datasheet.html
http://www.datasheetarchive.com/82S100-datasheet.html
http://skoe.de/docs/c64-dissected/pla/
http://skoe.de/docs/c64-dissected/pla/

	Contents
	Introduction
	The Need for a KERNAL Cartridge
	KERNAL Cartridge Design Challenges

	KERNAL Cartridge Design
	Working principle
	Optimization
	Timing Considerations

	Actual Implementation
	EasyFlash 3
	Implemented Timing
	Compatibility

	Bibliography

